Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Cell Rep Med ; 3(4): 100603, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-2004611

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic highlights the importance of determining the breadth and durability of humoral immunity to SARS-CoV-2 mRNA vaccination. Herein, we characterize the humoral response in 27 naive and 40 recovered vaccinees. SARS-CoV-2-specific antibody and memory B cell (MBC) responses are durable up to 6 months, although antibody half-lives are shorter for naive recipients. The magnitude of the humoral responses to vaccination strongly correlates with responses to initial SARS-CoV-2 infection. Neutralization titers are lower against SARS-CoV-2 variants in both recovered and naive vaccinees, with titers more reduced in naive recipients. While the receptor-binding domain (RBD) is the main neutralizing target of circulating antibodies, Moderna-vaccinated naives show a lesser reliance on RBDs, with >25% neutralization remaining after depletion of RBD-binding antibodies. Overall, we observe that vaccination induces higher peak titers and improves durability in recovered compared with naive vaccinees. These findings have broad implications for current vaccine strategies deployed against the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination
2.
mBio ; 13(5): e0178422, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2001780

ABSTRACT

The PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 health care workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike-binding antibody titers were highly variable with antibody levels decreasing over the first 3 months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted." We documented a total of 11 new SARS-CoV-2 infections (10 naive participants and 1 previously infected participant without detectable antibodies; P < 0.01), indicating that spike antibodies limit the risk of reinfection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months and provide protection from infection with antigenically similar viruses. IMPORTANCE SARS-CoV-2 is the cause of one of the largest noninfluenza pandemics of this century. This exceptional public health crisis highlights the urgent need for better understanding of the correlates of protection from infection and severe COVID-19. We established the PARIS cohort to determine durability and effectiveness of SARS-CoV-2 immune responses. Here, we report on the kinetics of SARS-CoV-2 spike-binding antibody after SARS-CoV-2 infection as well as reinfection rates using data collected between April 2020 and August 2021. We found that antibody levels stabilized at individual steady state levels after an initial decrease with seroreversion being found in only 6% of the convalescent participants. SARS-CoV-2 infections only occurred in participants without detectable spike-binding antibodies, indicating significant protection from reinfection with antigenically similar viruses. Our data indicate the importance of spike-binding antibody titers in protection prior to vaccination and the wide circulation of antigenically diverse variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Female , Adult , SARS-CoV-2/genetics , Reinfection , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Antibodies, Neutralizing
3.
Emerg Microbes Infect ; 11(1): 902-913, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1730557

ABSTRACT

The immune memory of over 400 million COVID-19 convalescents is not completely understood. In this integrated study, we recorded the post-acute sequelae symptoms and tested the immune memories, including circulating antibodies, memory B cell, and memory CD4 or CD8 T cell responses of a cohort of 65 COVID-19 patients over 1-year after infection. Our data show that 48% of them still have one or more sequelae symptoms and all of them maintain at least one of the immune components. The chances of having sequelae symptoms or having better immune memory are associated with peak disease severity. We did four-time points sampling per subject to precisely understand the kinetics of durability of SARS-CoV-2 circulating antibodies. We found that the RBD IgG levels likely reach a stable plateau at around 6 months, albeit it is waning at the first 6 months after infection. At 1-year after infection, more than 90% of the convalescents generated memory CD4 or CD8 T memory responses, preferably against the SARS-CoV-2 M peptide pool. The convalescents also have polyfunctional and central memory T cells that could provide rapid and efficient response to SARS-CoV-2 re-infection. Based on this information, we assessed the immune protection against the Omicron variant and concluded that convalescents should still induce effective T cell immunity against the Omicron. By studying the circulating antibodies and memory B or T cell responses to SARS-CoV-2 in an integrated manner, our study provides insight into the understanding of protective immunity against diseases caused by secondary SARS-CoV-2 infection.


Subject(s)
COVID-19 , Antibodies, Viral , Humans , Immunity, Cellular , Longitudinal Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL